一、圖形檢驗
生成殘差序列。在得到圖52結果後,在工作文件中點擊Object→Generate Series...,在彈出的窗口中,在主窗口鍵入命令如下“e2=resid^2”,如圖53所示,得到殘差平方和序列e2。
圖53
如果存在異方差,則隻可能是由於可支配收入X引起的。
繪製e2t對Xt的散點圖。按住Ctrl鍵,同時選擇變量X與e2,以組對象方式打開,進入數據列表,再點擊View→Graph→Scatter→Simple Scatter,可得散點圖,如圖54所示。
圖54
由圖54可以看出,殘差平方和e2t對X大致存在遞增關係,即存在單調增型異方差。
二、GoldfeldQuanadt(戈德菲爾特—匡特)檢驗
對變量取值排序(按遞增或遞減)。在工作文件中點擊Proc→Scrt Current Page...,在彈出對話框中輸入X即可(默認項是升序),如圖55所示。本列選擇升序排列,這時變量Y將以X按升序排列。
圖55
構造子樣本區間,建立回歸模型。在本案例中,樣本容量n=20,刪除中間1/4的觀測值,大約4個數據,餘下部分平分得兩個樣本區間:1~8和13~20,它們的樣本個數均是8個,即n1=n2=8。在工作文件窗口中點擊Sample菜單,在彈出的對話框中輸入1 8,將樣本期改為1~8,如圖56所示。
圖56
然後,用OLS方法,鍵入命令:ls y c x,求得如圖57所示的結果。
圖57
根據圖57中的數據,得到模型的估計結果為:
Y∧=1277.161+0.5541X
(0.829)(1.779)
R2=0.3454R2=0.2363D.W.=3.0045
F=3.1659RSS1=126528.3
同樣的,在Sample菜單中,將區間定義為13~20,利用OLS方法求得如圖58所示的結果。
圖58
根據圖58中的數據,得到模型的估計結果為:
Y∧=212.2118+0.7619X
(0.3997)(12.625)
R2=0.9637R2=0.9577D.W.=1.723
F=159.39RSS2=615472.0
計算F統計量: