首頁 牛津通識課:黑洞、光、行星、引力

Chapter 4 Gravitational waves

Gravitational waves have already been mentioned, in Chapter 3. Now let’s consider them in a little more detail. You will recall from Chapter 1 that, in Einstein’s theory, gravity is due to the curvature of space-time. Massive objects like stars and planets deform the shape of the space-time in which they exist, so that other bodies that move through it appear to have their trajectories bent. It is the mistaken interpretation of the motion of these bodies as occurring in a flat space that leads us to infer that there is a force called gravity. In fact, it is just the curvature of space-time that is at work.

The relevance of this for gravitational waves is that if a group of massive bodies are in relative motion (such as in the Solar System, or in a binary pulsar), then the curvature of the space-time in which they exist is not usually fixed in time. The curvature of the space-time is set by the massive bodies, so if the bodies are in motion, the curvature of space-time should be expected to be constantly changing. The scientific way to describe this situation is to say that, in Einstein’s theory, space-time is a dynamical entity.

As an example of this, consider the supernovae that we discussed previously. Before their cores collapse, leading to catastrophic explosion, they are relatively stable objects, much like our own Sun. In this stage of their life they should therefore be expected to curve the space-time around them in the same way that the Sun does, and should therefore have a similar gravitational field. After they explode they settle down to a neutron star or a black hole, and once again return to a relatively stable state, with a gravitational field that doesn’t change much with time. During the explosion, however, they eject huge amounts of mass and energy. Their gravitational field changes rapidly throughout this process, and therefore so does the curvature of the space-time around them.

Like any system that is pushed out of equilibrium and made to change rapidly, this causes disturbances in the form of waves. A more down-to-earth example of a wave is what happens when you throw a stone into a previously still pond. The water in the pond was initially in a steady state, but the stone causes a rapid change in the amount of water at one point. The water in the pond tries to return to its tranquil initial state, which results in the propagation of the disturbance, in the form of ripples that move away from the point where the stone landed. Likewise, a loud noise in a previously quiet room originates from a change in air pressure at a point (e.g. a stereo speaker). The disturbance in the air pressure propagates outwards as a pressure wave as the air tries to return to a stable state, and we perceive these pressure waves as sound.