首頁 仙緣無限

第十一章 聚變引擎

原子聚變反應的這一係列過程看起來很簡單,仿佛很容易實現似的,其實不然,想要通過人為的努力來實現這種核聚變反應,尤其是可以控製的核聚變反應,對人類的技術水準來說不是一般的困難。

這其中的原因很簡單,核聚變所需要的溫度實在太高了。就拿聚變反應中條件最低的氚(氫3)和氘(氫2)之間的聚變來說,最起碼也需要數千萬度的溫度才能實現。隻不過氫3是半衰期為124年的放射性元素,自然界並不存在,想要利用它進行核聚變反應,必須特別製造才行。

退而求其次,再看比較容易實現的氦3和氫2之間的聚變反應,那也需要一億度左右的溫度;至於其他聚變反應,例如氘氘聚變之類的,需要的溫度至少也在一億度以上。這麽高的溫度,人類如何實現?又如何控製?

如果說製造出幾千萬、上億度的溫度還有可能,比如使用原子彈爆炸產生的極度高溫來促使聚變反應的出現(那正是氫彈的製造原理),或者使用高能激光束進行照射的方式提升溫度。

那麽,如何控製這麽高的溫度卻讓地球上的科學家傷透了腦筋。不能控製的核聚變反應,那就是一錘子買賣,和氫彈一樣,除了具有強大無比的殺傷力之外,對人類並沒有任何積極的意義。

人類如果想要利用核聚變所產生的龐大能量為自己服務的話,如何控製住那近億度的極端高溫,將是他們不得不先克服的難關。為了解決這個問題,科學家們展出了慣性約束與磁力約束這兩種最主要、最成熟的約束高溫反應體的理論,並且各自根據理論設計,積極建設可控核聚變裝置進行試驗。

展到現在,那兩種不同的可控核聚變裝置也都取得了不小的成功,甚至科技最達的美國已經有了核聚變反應堆投入到商業使用中,眼見最終的全麵實用化仿佛就在眼前。而葉秋離早前得到的那份可控核聚變反應堆的設計圖紙,正是處在那種即將全麵實用化的科技水平上麵。